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Bi-orthogonality of Resonance Wave Functions in NG
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The overlap between nonorthogonal wave functions of resonance (Siegert) states is analyzed. Their asymptotic
behavior, which controls the extent of nonorthogonality, is shown to be directly related to the residues of the
energyS matrix. This allows one to estimate overlap integrals using solely positions and widths of resonance
states, without the explicit calculation of the wave functions. This assessment, as applied, sudigests

that resonances in the molecule are only slightly nonorthogonal and decay independently of one another.

I. Introduction survival probability P(t). The problem will be tackled by
considering the asymptotic properties of resonance eigen-
Yfunctions: exact solutions of the Scldinger equation. In this
respect, our approach is different from the more familiar one,
in which the decay of overlapping resonances is studied after
statistical averaging over the energy window containing many

This paper substantiates the model used in our previous stud
for the analysis of the time-dependent decay of,M®@lecules
excited above the first dissociation threshlg (see ref 1, to
be referred to as paper I). Experimental time delay curves were
successfully simulated by computing the survival probabllity,

states’ 6
P(t) = le |2 1) The accuracy of the approximation depends on the extent to
S which resonance wave functions are orthogonal. @&t= 0;

R) be the initial wave packet describing the molecule above
wherep, is the probability amplitude of finding a molecule in  the dissociation threshold (vect& denotes a set of internal
a resonance stateat timet. The key assumption of the model coordinates; Jacobi coordinatBsr, andy defined in section
was that the survival probability could be expressed in a simple Il of paper | are used throughout this work). Assume further

multiexponential form: that®(t = 0; R) can be expanded over a set of resonance wave
functionsy,”
PO = 1Al (2)
v O(t=0;R) = z Ay, (R)
Here,T', denotes the width of theth resonance state, known ’
from the numerical solution of the Scltimger equation}A, |? The probability amplitud@, in eq 1 is a projection of the wave

measures the probability for exciting this resonance state with packet at time, ®(t), onto stateu. In the most general form,
laser light. For a chaotic molecule, such as\iBe coefficients this projection can be written as
|A,|2 are determined by the form of the pump pulsand the
summation in eq 2 runs over those states that fall within the = [ p* = B[ x
spectral bandwidth of the laser. The chief value of eq 2 is that Pu f 1/)#<I>(t) de Z Ae f Viby ae
it uses a limited amount of information for transforming a
resonance spectrum into a time-dependent decay: only theHere, d2 is a volume element, = E, — iI,/2 is a complex
positions and the widths of resonances are required, but not theresonance energyy, is a function of thedual spacé (in Dirak
corresponding wave functions. This was of importance to the notation,y: is nothing but ara-vector). The dual functior,,
previous studysince the wave functions of the resonance states coincides withy, if the eigenvalue is real; otherwisg, and
have not been calculated. At the same time, such a “diagonaly, are two distinct functions (see discussion below). If the
approximation”, in which states decay independently of one overlap betweeny’ andy, is zero, the two states are said to
another, requires justification, at least in the case of N@ere be bi-orthogonal. Were all statesand u bi-orthogonal, the
resonances are known to overlap. For the spectrum, calculatecamplitude p, would be equal toA.e ! and the survival
in paper |, the overlap parametgr composed of the average  probability P(t) would take on a “diagonal” form, as in eq 2.
resonance widthl'Jand the density of statgs If, however,v andu are not bi-orthogonal, botp, and P(t)
depend on the elements of the overlap malix
§=mp 3

varies between 1 and 3. Is it permissible to negikistoverlap N, = [ Vi, dQ 4)
in P(t)? . . _

|n( zhe present paper we shall explain why the “diagonal andP(t) contains not only exponential decays but also oscillating
approximation”, eq 2, provides a reliable estimation of the cosine terms describing interference between pairs of resonance

states.
T Part of the special issue “C. Bradley Moore Festschrift”. The chief cause of nonorthogonality of resonance wave
* Electronic mail: sgreben@gwdg.de. functions is the following. Sinc&, has a negative imaginary
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part, the amplitude ofy,(R) exponentially grows in the
asymptotic regionR — «).19 In fact, the integrals in eq 4 do
not exist! They are only meaningful if taken over a “bounded
interaction region”R < Rnax (see, for example, ref 8). When
defined in this way, the overlap integrals do not diverge but
are not zero either; by the same token, the normalization
integrals, i.e., the diagonal elemeis, differ from unity. It is
these matrix elements,, that we are going to estimate for NO
from first principles, using only calculated positions and widths

Grebenshchikov

resonance state; instead, an energy-dependent imaginary po-
tential —iVop(E) was introduced. This potential was meant for
absorption of incoming waves and simulation of the correct
asymptotic behavior. The eigenvalues and eigenfunctions of the
problem solved in paper | and the problem defined in egs 5a
and 5b are known to be closely related/if, depends weakly

on energy?817For NG, this is indeed the case. The change in
VopdE) over a given energy intervakE is roughly proportional

to ~O0E/AH, whereAH is the spectral range of the Hamiltonian

of the resonance states. Of crucial importance is the fact thatH. Since AH is about 30 eV for the spatial grid used in the

we can expres$\,, through the residues of th® matrix at
energieE, andE, (cf. eq 25 below). The residues, in turn, can

calculations, while the considered energy rangéls~ 2000
cm 1, the relationdE/AH < 1 and, hence|dVop/dE| < 1 is

be estimated without reference to the resonance wave functionssatisfied. This means that the optical potential is almost

The plan of the paper is the following. In section Il we outline

independent of energy within the entire energy range studied.

the most important features of Siegert states. The asymptoticConsequently, the choice between the Sdimger equation with

behavior of resonance eigenfunctions is analyzed in section III.

Finally, the results of section Ill are further used in section IV
for estimating the overlap matriX for NO,.

Il. Siegert States

Let us briefly review what is known about the resonance wave

functions. Since several in-depth introductory texts are available

(see, for example, refs 8, 10, and 11) and, additionally, the
subject was recently addressed by a number of researc
groupst?~14 we have restricted the consideration to the proper-
ties essential for our model.

Resonance statgg, (also called Siegert states, ref 15) are
solutions of the Schidinger equation with “radiation” boundary
conditions:

Ay, = [T+ V(Rr))] v, =Eyp, (5a)
a, B
aR R=R.. - Ikvwv (Sb)

Here, H is the molecular Hamiltonian; the (complex) wave
vector is given byk, = (2E,)¥2 and the resonance energy is
measured from the first dissociation threshold (in what follows
we assuméi = ur = 1, whereur is the mass associated with
the coordinateR). The boundary condition (5b) is imposed in
the asymptotic region of the potentisl where rotation and
vibration of NO are already separated from the (free) transla-
tional motion along the dissociation coordina®e Siegert
functions are the residues of the energy Green’s fun@i@g),
which is written as

Vo,
G(E) = ZE =

v

(6)

a real Hamiltonian and complex boundary conditions (as in eqs
5a and 5b) and the Schdimger equation with a complex
Hamiltonian (as in the optical model, eq 7) becomes a matter
of convenience: for numerical computations, the absorbing
potential appears to be a sound alternative today, while the
analysis of properties of resonance wave functions can be
performed with eq 5a.

A remark is in order concerning Green'’s function, eq 6, and

pthe boundary condition in eq 5b. Representatiot ¢E) as a

meromorphic function (i.e., as a sum over simple poles) is
appropriate only if the decay proceeds via a single product
channel18 If the number of channels is larger than one (as
happens with N@ roughly 3.5 cn® above the dissociation
threshold), G (E) contains branch points, and the Riemann
surface can no longer be mapped onto the comglgkane
(examples of multichannel Green’s functions aanatrices

are discussed in chapter 17 of ref 18). At the same time, we
remind the reader, that the “single-channel” eq 6 is at the heart
of the harmonic inversion algorithm employed in paper | for
solving the Schidinger equation. Moreover, when quantum
results obtained with different methods are compared, it is
apparent that eq 6 works well for multichannel decay: the
spectrum behaves as if there were only one threshold in the
reaction— the first dissociation thresholdy. Therefore, in what
follows we shall use the single-channel approximation. Con-
sistent with this, the boundary condition, eq 5b, is also written
for one channel only. Generalization to the multichannel case
will be given elsewheré?

The functional space of solutions of eq 5a is non-Hermitian,
because the boundary condition is complex. The scalar product
in this space is also non-Hermiti&A?so that integrals involving
resonance states contain unugaral-functions, as in eq 4. This
formal mathematical definition is physically significant: for
example, combinationg*y, are shown to enter perturbation
series for resonance statéd’ The functiony, satisfies the same

The eigenfunctions defined in egs 5a, 5b, or 6 form a suitable Schralinger equation agp,, but with a boundary condition
basis for expanding wave packets and studying their temporal corresponding to a purely incoming wat&*

evolution. The simplicity of the energy dependence of the

Green'’s function guarantees that the evolution operator [energy

Fourier transform o6 (E)] is diagonal in thep, representation.

It is these states that we shall use for calculating the overlap

matrix N. In the strict sense, the Scliiager equation, which
we solved numerically in paper §pproximateshe problem
(5a) and (5b) but is different from it. Recall that the resonance
spectrum was calculated using the optical m&delith the
Hamiltonian

Fop(E) = H — iV (E) @)

Boundary condition (5b) was not imposed individually on every

ap,
R [R=R .,

=—iKp, (8)

Thus, v, corresponds to the eigenval. It can be easily
shown thaty, andy, are related through

©)

Therefore, the overlap matrix, eq 4, can be rewritten as

v, =Y}

N‘uv = fRSRmaX 1/);41/)1/ dQ (10)
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Resonance wave functions enter the integral without complex C?%2= ig (17)
. . . . . 4 v

conjugation, as do the bound eigenfunctions. This shows, by

the way, that all matrix elements,,, including the normaliza-

tion constant,, are complex (the significance of the complex

norm is discussed in ref 17). The time dependence of the dual

state vectors is given by

This is one of the main results of this paper. It generalizes an
analogous relation obtained earlier in ref 11 for wave functions
of bound state£® Equation 17 implies that the information about
the asymptotic behavior of resonance wave functions lurks in
scattering phases.

T (+ _ 5 ooiEt
Y, (ER) =y.e = (11) Here is the proof of eq 17. Let us consider a regular solution
) - ) of the wave equation above the dissociation threshold. At large
Note that eq 9 holds only for the coordinate paytof the time- interfragment distances it can be written as
dependent functio?,(t;R). By means of the dual functions
one can define the norm of a state, expectation values of _ —ikR ik
b «(Rry) =const[e"— K €V g (ry)  (18)

operators, and the probability current density. For example, an

analogue of the continuity equation reads as At k = k, this solution goes over into the eigenfunctign.

9 - i c s Therefore, in a small vicinity of the complex pokg,
o Srer  TEW,dQ = — > $rr [W,VE; — WV | ds
(12) k=K, +e, le] =0

The integral on the right-hand side (rhs) is evaluated along where the pole expansion, eq 16, is valid, the funcjionust
Jacobi coordinates and y over the surface defined by the assume the following form:

conditionR = Ryax

The overlap matrix, eq 10 can be cast in a different férm.
Just as in the one-dimensional cdsme considers two wave
equations forp, andy,, multiplies them with (respective) dual
functions and applies Green’s formula to their difference. The 115 form can be enforced upgnby adjusting the constant
result o_f these transformations is the following convenient ¢, v in eq 18. Now we use the “continuity equation” (12) near
expression foN: the polek,. Let one of the functions, on which the current density

i is built, be the functiory. Another one can be chosen to be the
N, =0,, — mv fR:Rma}//#wv ds (13) dual func'.[iom])v. Since it corresponds to a distant pet&’, its
" asymptotic behavior remains unchangedkas k,:

Pu(r.y) (19)

v

X(er,)/) ~ Cv[eikR B gie_ikR

Equation 13 shows that the overlap is sensitive to the “tails” of . _iKR

resonance wave functions on the surf&e Ryna Where the P (Rry) = C(—K)e "¢ (ry) =

boundary condition, eq 5b, is imposed. Thus, to calcukite C (—lé)e_i(k*_e*)%n(r,y)
one has to exactly know, at large interfragment distances. Y

Ill. Asymptotic Behavior of Resonance Wave Functions Then, the continuity equation fgr ands, reads as

and Residues of the S Matrix 3 . .
o f d)*x e|E],te—|E€t do =
The interaction between the decay products vanishes on thegt J R=Rmax *¥
surfaceR = Rnax. Therefore, at large distanc&sthe function i Bt —iEt ~e
¥, has the following form consistent with the boundary T E $rer, JXVUL — 9V ds (20)
condition (5b):

, HereE; is the energy associated with the wave vedtor
[0, (R )rer,, = Cuk)ETB,(r7) (14)
E =2 (k+ e ~E, +k e+ O0(e)
Here,C,(k,) is a complex numberd,(k,) = C;(—K), because 2
of the symmetry property (9)pn(r,y) is a wave function of
the NO fragment, and denotes its vibrational and rotational
quantum numbers. Sincg(r,y) is a real and quadratically
integrable function, the surface integralNp, (eq 13) is unity,

i 0 ~ ok —ik,e e—0 : ~ %
and the overlap matrix reduces to & fRsRmanv e ket 40 _,(_,kve)fRsRmanv% daQ =

Let us estimate both sides of eq 20 to first ordee.irOn the
left-hand side (lhs) we find:

-y - | i(K,+K,)Renax
N, =0,, i +kVQ“(kf‘) C,k)e (15)

%,

In the last equality we take into account that the nornppfs
given by eq 15 withy = v. Estimating the rhs of eq 20, one

(—ikve)ll - ge”kﬂmax] (21)

The coefficientsC, control the norm, as well as the overlap.
We show now thaC, is related to the residue of tf&matrix
at the polek,. Explicitly: If the S matrix near the pole is written

ag? has to keep in mind thdt$,2 ds= 1 and the normal derivative
to the surfaces coincides with 3/0R. Then, after simple
g, transformations one gets
SK) = — (16)
k—k, ~2 2
) iC,” iC, 2H R -
thenC, is given by (=ike) g, % (22)
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Comparing egs 21 and 22, we see that . E— E:
SE) = e2l30(Ev) |_|— (27)
—iCg,=1 «w E—E,
which coincides with eq 17. and taking the residue:
A related expression for the asymptotic form of a resonance
wave function was previously obtained for radislwave E,—E
scattering in ref 24. However, the final result was expressed G,=T, g2%(Ey) |_|—
through a combination of Jost functions, and this limited its w=r B, — E,
applicability to one-dimensional problems for which the Sehro ) )
dinger equation is an ordinary differential equation. Moreover, i50E.) LT |§,4
the derivation was based on specific properties of 1D Green’s =T, M1+ —7—
functions. The asset of eq 17 is that it is valid for any number =y 1+ 5,12 I{uz
of dimensions and, as such, is based on the most general (28)

properties of the wave equation. ] )

Here, we introduced two parameters that characterize the
IV. Estimation of the Overlap Matrix in NO ». resonance spectrums, = Fﬂ/(Eﬁ — E)) is analogous to the
overlap parametef, eq 3;«, = (I, — I',)/2I, is governed by
the amplitude of fluctuations of resonance widths. If&ll<
1 (the resonances do not overlafi},| is indeed equal td,.
With growing &,, |G,| rises and becomes larger than the
resonance width. It is remarkable, however, that the condition
&, > 1 alone does not yield large residues. For example, if the
overlapped resonances are broadly distributge: 1, |G,| turns
v 23 out to be of the order of’, again. It could be beneficial to
E—E (23) analyze the bi-orthogonality of resonance wave functions by
v averaging eq 28 over a statistical distribution function of widths
and positions of resonances.

In NO,, both§, andx, vary over wide limits, and we estimate
|G,] numerically. For everyv, only those resonances are
included in the product in eq 28, which lie within the window
of ~200 cnt! aroundE, (this coincides with the average
spectral width of laser pulses used in the time-resolved experi-
ment). We find that the overlap of resonances cauSgsto
The matrixN, eq 15, is, therefore increase by about an order of magnitude with respeEt té\s

a result, the maximum “norm defect” for the absolute majority
i(GﬂGV)l’2 k)R of resonance states rises to 0.1. This is still a tolerable deviation,
v = Oy — ™ (25) and the “diagonal” equation (2) provides a decent approximation
2(kM + kv)(ku k,) to the survival probability. The overall decay of the molecule
is very close to a sum of independent exponential decays.
Let us first consider the diagonal elements. For the absolute
value of the “norm defect” one gets Acknowledgment. | would like to thank R. Schinke and B.
Abel for calling my attention to the problem of nonorthogonality
of resonance wave functions and V. Mandelshtam for stimulat-
(26) ing discussions. | am grateful to R. Schinke for careful reading
the manuscript. Financial support by the Deutsche Forschungs-
gemeinschaft is acknowledged.

The theorem we just proved can be utilized to estimate the
matrix elementsN,, for the resonances of NCemployed in
calculation of the decay curves (they are shown in Figure 3 of
paper I). The pole expansion of tBamatrix (we return back to
the energy representation) read$’a&'8

G

SE=BE -y

whereB(E) is a smooth background ar@, is the residue at
energyE,, related to the residug, of the previous section
through

ig, = G, /2K, (24)

G,
&,

This follows from the limitation on the maximum width of

resonanced, max iN our quantum mechanical calculations (cf.

eq 4 in paper I): the conditioll = I'max Which holds for all

states, means exactly 2kRmax < 1. (1) Krimse, B.; Abel, B.; Schwarzer, D.; Greb_enshchikov, S. Yu;
Care is required in the estimation Gf. If, as is customary? SCh'(’;')(emﬁ,jAEers,s C:gﬂ‘zsoogelol‘ggi%% ggefed'”g paper.

this residue is assumed to be equal to the product of the  (3) simonius, M'.phys_yl_'ett. B1974 52, 279.

resonance width and the nonresonant phBEsexp[2i0q(E.,)], (4) Peskin, U.; Reisler, H.; Miller, W. HJ. Chem. Phys1994 101,

the “norm defect” amounts td,/4E°. For all converged 9672

resonances of N£xhis ratio never exceeds 0.01. The same is % E;g;g’rg'va(p'VP.r Osgc'm':r?frlsggﬂ_i‘l’,\?;sﬁ Phys1997, 38, 1918

also true for the overlap integrals: deviations from bi- (7) This expansion is meaningful only if the bagis,} is complete,

orthogonality are less than 0.02. Thus, the set of resonance waveit least in narrow energy windows covered by laser pulses. We shall assume

functions appears to be bi-orthogonal with a high degree of that this condition is satisfied. Completeness of resonance wave functions
was discussed in ref 8.

preCi.Sion- . . (8) Kukulin, V. 1.; Krasnopolsky, K. M.; Horeek, J. Theory of
This result, however, is not exactly correct. The fact is that Resonances, Principles and Applicatiphduwer: Dordrecht, The Neth-
|G,| coincides withT", only if the resonances are completely erlands, 1989.

isolated. Nearby states can change both the phased the 19789) Merzbacher, EQuantum Mechani¢c22nd ed.; Wiley: New York,

absolute value o,. We make this clear by representing the (10 Landau, L. D.; Lifshitz, E. MQuantum Mechanics. Nonrelaistic
single channe$ matrix SE) as a unitary product expansién, Theory Pergamon: New York, 1976.

2K R ‘i
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